Model independent measurements of standard model cross sections with domain adaptation

Author:

Camaiani Benedetta,Seidita Roberto,Anderlini Lucio,Ceccarelli Rudy,Ciulli Vitaliano,Lenzi Piergiulio,Lizzo Mattia,Viliani Lorenzo

Abstract

AbstractWith the ever growing amount of data collected by the ATLAS and CMS experiments at the CERN LHC, fiducial and differential measurements of the Higgs boson production cross section have become important tools to test the standard model predictions with an unprecedented level of precision, as well as seeking deviations that can manifest the presence of physics beyond the standard model. These measurements are in general designed for being easily comparable to any present or future theoretical prediction, and to achieve this goal it is important to keep the model dependence to a minimum. Nevertheless, the reduction of the model dependence usually comes at the expense of the measurement precision, preventing to exploit the full potential of the signal extraction procedure. In this paper a novel methodology based on the machine learning concept of domain adaptation is proposed, which allows using a complex deep neural network in the signal extraction procedure while ensuring a minimal dependence of the measurements on the theoretical modeling of the signal.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference13 articles.

1. N. Berger et al., Simplified template cross sections—stage 1.1. LHCHXSWG-2019-003 (2019). arXiv:1906.02754

2. M. Kuusela, V.M. Panaretos, Statistical unfolding of elementary particle spectra: empirical bayes estimation and bias-corrected uncertainty quantification. Ann. Appl. Stat. (2015). https://doi.org/10.1214/15-aoas857

3. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. Vaughan, A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4

4. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 2030–2096 (2016). arXiv:1505.07818

5. G. Louppe, M. Kagan, K. Cranmer, Learning to pivot with adversarial networks (2016). arXiv:1611.01046

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3