Electric current and heat production by a neutral carrier: an effect of the axion

Author:

Brevik Iver H.,Chaichian Moshe M.

Abstract

AbstractA general axion-electrodynamic formalism is presented on the phenomenological level when the environment is dielectric (permittivity and permeability assumed to be constants). Thereafter, a strong and uniform magnetic field is considered in the z direction, the field region having the form of a long material cylinder (which corresponds to the haloscope setup). If the axion amplitude depends on time only, the axions give rise to an oscillating electric current in the z direction. We estimate the magnitudes of the azimuthal magnetic fields and the accompanying Joule heating in the cylinder, taking the cylinder to have ordinary dissipative properties. We evaluate and calculate the electric current and the heat production separately, without using the effective approximation, both when there is a strong magnetic field and when there is a strong electric one, showing that with the magnetic field there is a heat production, while with the electric field there is not. The heat generation that we consider, is a nontrivial effect as it is generated by the electrically neutral axions, and has obvious consequences for axion thermodynamics. The heat production can moreover have an additional advantage, since the effect is accumulative and so grows with time. The boundary conditions (in a classical sense) are explained and the use of them in a quantum mechanical context is discussed. This point is nontrivial, accentuated in particular in connection with the Casimir effect. For comparison purposes, we present finally some results for heat dissipation taken from the theory of viscous cosmology.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3