Competition of chiral soliton lattice and Abrikosov vortex lattice in QCD with isospin chemical potential

Author:

Grønli Martin SpillumORCID,Brauner Tomáš

Abstract

AbstractWe investigate the thermodynamics of two-flavor quark matter in presence of nonzero isospin chemical potential and external magnetic field. It is known that at sufficiently high isospin chemical potential, charged pions undergo Bose–Einstein condensation (BEC). The condensate behaves as a superconductor, exhibiting Meissner effect in weak external magnetic fields. Stronger fields stress the superconducting state, turning it first into an Abrikosov lattice of vortices, and eventually destroying the condensate altogether. On the other hand, for sufficiently strong magnetic fields and low-to-moderate isospin chemical potential, the ground state of quantum chromodynamics (QCD) is expected to be a spatially modulated condensate of neutral pions, induced by the chiral anomaly: the chiral soliton lattice (CSL). We map the phase diagram of QCD as a function of isospin chemical potential and magnetic field in the part of the parameter space accessible to a low-energy effective field theory description of QCD. Our main result is an explicit account of the competition between the CSL and the Abrikosov vortex lattice. This is accomplished by adopting a fast numerical algorithm for finding the vortex lattice solution of the equation of motion and the corresponding Gibbs energy. We find that the Abrikosov vortex lattice phase persists in the phase diagram, separating the uniform charged pion BEC phase from the CSL phase. The precise layout of the phase diagram depends sensitively on the choice of the vacuum pion mass.

Funder

ToppForsk-UiS

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3