Observational constraints of the modified cosmology through Barrow entropy

Author:

Asghari Mahnaz,Sheykhi Ahmad

Abstract

AbstractTaking into account a fractal structure for the black hole horizon, Barrow argued that the area law of entropy is modified due to quantum-gravitational effects (Barrow in Phys Lett B 808:135643, https://doi.org/10.1016/j.physletb.2020.135643, 2020). Accordingly, the corrected entropy takes the form $$S \sim A^{1+{\Delta }/2}$$ S A 1 + Δ / 2 , where $$0\le {\Delta }\le 1$$ 0 Δ 1 indicates the amount of the quantum-gravitational deformation effects. In this paper, based on Barrow entropy, we first derive the modified gravitational field equations through the Clausius relation. We then consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric as the background metric and derive the modified Friedmann equations inspired by Barrow entropy. In order to explore observational constraints on the modified Barrow cosmology, we employ two different combinations of available datasets, mainly “Planck + Pantheon + BAO” and “Planck + Planck-SZ + CFHTLenS + Pantheon + BAO + BAORSD” datasets. According to numerical results, we observe that the “Planck + Pantheon + BAO” dataset predicts higher values of $$H_0$$ H 0 in Barrow cosmology with a phantom dark energy compared to $$\mathrm {\Lambda }$$ Λ CDM, so tensions between low redshift determinations of the Hubble constant and cosmic microwave background (CMB) results are slightly reduced. On the other hand, in the case of dataset “Planck + Planck-SZ + CFHTLenS + Pantheon + BAO + BAORSD” there is a slight amelioration in $$\sigma _8$$ σ 8 tension in Barrow cosmology with a quintessential dark energy compared to the standard model of cosmology. Additionally, for a more reliable comparison, we also constrain the wCDM model with the same datasets, where our results exhibit a satisfying compatibility between Barrow cosmology and wCDM.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3