Skewness-based characterization of silicon photomultipliers

Author:

Vinogradov S.ORCID

Abstract

AbstractCharacterization of SiPMs is an objective of high importance in almost any research, development, and application of these unique photon detectors. Two decades of characterization method developments resulted in a comprehensive and elegant methodology based on a precisely resolved number of fired SiPM cells or the SiPM spectrum. Spectrum fitting procedures are very sensitive to a proper selection of many initial guess values including parameters of minor importance and happen to be unreliable. Moreover, conventional methods are useless for degraded or unresolved SiPM spectra. This challenge was anticipated for SiPM-based detectors of high-luminosity particle calorimeters where a severe radiation degradation of the SiPMs would co-exist with their acceptable performance. To address it, one can measure a mean and variance of SiPM charge responses relying on a priori known Excess Noise Factor of the SiPM but its stability during SiPM degradation is uncertain. This study proposes and evaluates a new approach for the SiPM characterization based on the first three statistical moments (mean, variance, and skewness) of its charge response including skewness. It assumes the Generalized Poisson distribution of the number of fired cells and provides simple closed-form analytical expressions for the parameter estimation. It allows determining a gain, a number of detected photons, and a probability of correlated events directly from raw data. The skewness-based characterization is anticipated to be especially useful for mass testing and continuous monitoring of SiPMs in large-scale experiments due to its simplicity and robustness. Initial evaluations of the method show promising results.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct comparison of SiPM and PMT sensor performances in a large-size imaging air Cherenkov telescope;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-07

2. PeakOTron: A Python module for fitting charge spectra of Silicon Photomultipliers;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-11

3. φ-OTDR signal compression scheme based on the compressed sensing theory;Optics Express;2023-05-30

4. Feasibility of skewness-based characterization of SiPMs with unresolved spectra;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3