Author:
Ahmed Ambreen,Muteeb M. Nouman
Abstract
AbstractIn this article we study certain degenerations of the mirror curves associated with the Calabi–Yau threefolds $$X_{N,M}$$
X
N
,
M
, and the effect of these degenerations on the refined topological string partition function of $$X_{N,M}$$
X
N
,
M
. We show that when the mirror curve degenerates and become the union of the lower genus curves the corresponding partition function factorizes into pieces corresponding to the components of the degenerate mirror curve. Moreover we show that using degeneration of a generalised mirror curve it is possible to obtain the partition function corresponding to $$X_{N,M-1}$$
X
N
,
M
-
1
from $$X_{N,M}$$
X
N
,
M
.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference47 articles.
1. M. Aganagic, A. Klemm, M. Marino, C. Vafa, The topological vertex. Commun. Math. Phys. 254(2), 425–478 (2004)
2. M. Aganagic, A. Klemm, C. Vafa, Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1–28 (2002)
3. M. Aganagic, C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs. 12 (2000)
4. O. Aharony, A brief review of ‘little string theories’. Class. Quantum Gravity 17(5), 929–938 (2000)
5. O. Aharony, A. Hanany, B. Kol, Webs of (p, q) 5-branes, five dimensional field theories and grid diagrams. J. High Energy Phys. 1998(01), 002 (1998)