Peccei–Quinn symmetry breaking via asymptotically safe dynamical scalegenesis: a walking axicolor and axion

Author:

Ishida HiroyukiORCID,Matsuzaki Shinya,Peng Xiao-Chang

Abstract

AbstractBreaking the Pecci–Quinn (PQ) symmetry by the perturbative dynamics would suffer from a hierarchy problem, just like the electroweak symmetry breaking in the standard model. The dynamics of the axion, associated with the PQ symmetry breaking, would also involve a triviality problem. We provide a paradigm to resolve those two problems potentially existing in the PQ symmetry breaking scenario, with keeping the successful axion relaxation for the QCD strong CP phase. The proposed theory includes an axicolor dynamics with the axicolored fermions partially gauged by the QCD color, and is shown to be governed by an asymptotically safe (AS) fixed point: quantum scale invariance is built. The AS axicolor is actually a “walking” dynamics, which dynamically breaks a PQ symmetry, a part of the chiral symmetry carried by the axicolored fermions. The PQ scale generation is then triggered by the nonperturbative dimensional transmutation in the “walking” dynamics. A composite axion emerges as the associated Nambu-Goldstone boson. That is, no hierarchy or triviality problem is present there. The composite axion can potentially be light due to the characteristic feature of the AS axicolor (“walking” axicolor), becomes the QCD axion in the anti-Veneziano limit, and gets heavier by the subleading correction. The composite axion relaxes the QCD theta parameter, involving heavier relaxation partners such as axicolored pseudoscalar mesons, and the ultraviolet correction to the relaxation mechanism is protected by the established (near) scale invariance during the “walking” regime.

Funder

Japan Society for the Promotion of Science

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3