Conformally-rescaled Schwarzschild metrics do not predict flat galaxy rotation curves

Author:

Hobson Michael,Lasenby Anthony

Abstract

AbstractFor conformally invariant gravity theories defined on Riemannian spacetime and having the Schwarzschild–de-Sitter (SdS) metric as a solution in the Einstein gauge, we consider whether one may conformally rescale this solution to obtain flat rotation curves, such as those observed in galaxies, without the need for dark matter. Contrary to recent claims in the literature, we show that if one works in terms of quantities that can be physically measured, then in any conformal frame the trajectories followed by ‘ordinary’ matter particles are merely the timelike geodesics of the SdS metric, as one might expect. This resolves the apparent frame dependence of physical predictions and unambiguously yields rotation curves with no flat region. We also show that attempts to model rising rotation curves by fitting the coefficient of the quadratic term in the SdS metric individually for each galaxy are precluded, since this coefficient is most naturally interpreted as proportional to a global cosmological constant. We further extend our analysis beyond static, spherically-symmetric systems to show that the invariance of particle dynamics to the choice of conformal frame holds for arbitary metrics, again as expected. Moreover, we show that this conclusion remains valid for conformally invariant gravity theories defined on more general Weyl–Cartan spacetimes, which include Weyl, Riemann–Cartan and Riemannian spacetimes as special cases.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3