Author:
Godani Nisha,Debata Smrutirekha,Biswal Shantanu K.,Samanta Gauranga C.
Abstract
AbstractIn this work, static traversable wormholes are investigated in $$R^2$$R2 gravity with logarithmic trace term T, where R denotes the Ricci scalar, and $$T=-\rho +p_r+2p_t>0$$T=-ρ+pr+2pt>0, the trace of the energy momentum tensor. The connection between energy density of the matter component and the Ricci scalar is taken into account. Exact wormhole solutions are determined for three different novel forms of energy density: $$\rho =\alpha _1 R+\beta _1 R^{'}e^{\xi _1 R}$$ρ=α1R+β1R′eξ1R, $$\rho =\alpha _2 R e^{\xi _2 R}$$ρ=α2Reξ2R and $$\rho =\alpha _3 R^2+\beta _2 R^{'} e^{\xi _3 R^{'}}$$ρ=α3R2+β2R′eξ3R′, where prime denotes derivative with respect to r. The parameters $$\alpha _1$$α1, $$\beta _1$$β1, $$\xi _1$$ξ1, $$\alpha _2$$α2, $$\xi _2$$ξ2, $$\alpha _3$$α3, $$\xi _3$$ξ3 and $$\beta _2$$β2 play an important role for the absence of exotic matter inside the wormhole geometry. The parameter space is separated into numerous regions where the energy conditions are obeyed.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference116 articles.
1. L. Flamm, Phys. Z. 17, 448 (1916)
2. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)
3. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)
4. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988)
5. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献