Quasi-normal modes of static spherically symmetric black holes in f(R) theory

Author:

Datta SayakORCID,Bose Sukanta

Abstract

AbstractWe study the quasi-normal modes (QNMs) of static, spherically symmetric black holes in f(R) theories. We show how these modes in theories with non-trivial f(R) are fundamentally different from those in general relativity. In the special case of $$f(R) = \alpha R^2$$f(R)=αR2 theories, it has been recently argued that iso-spectrality between scalar and vector modes breaks down. Here, we show that such a break down is quite general across all f(R) theories, as long as they satisfy $$f''(0)/(1+f''(0)) \ne 0$$f(0)/(1+f(0))0, where a prime denotes derivative of the function with respect to its argument. We specifically discuss the origin of the breaking of isospectrality. We also show that along with this breaking the QNMs receive a correction that arises when $$f''(0)/(1+f'(0)) \ne 0$$f(0)/(1+f(0))0 owing to the inhomogeneous term that it introduces in the mode equation. We discuss how these differences affect the “ringdown” phase of binary black hole mergers and the possibility of constraining f(R) models with gravitational-wave observations. We also find that even though the iso-spectrality is broken in f(R) theories, in general, nevertheless in the corresponding scalar-tensor theories in the Einstein frame it is unbroken.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference85 articles.

1. B.P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017)

2. B.P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016)

3. B.P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. X 6, 041015 (2016)

4. B.P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016)

5. B.P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119, 161101 (2017)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3