Author:
Yu Guo-Liang,Wang Zhi-Gang,Li Zhen-Yu
Abstract
AbstractIn this article, we analyze tensor-vector-pseudoscalar(TVP) type of vertices$$D_{2}^{*+}D^{+}\rho $$D2∗+D+ρ,$$D_{2}^{*0}D^{0}\rho $$D2∗0D0ρ,$$D_{2}^{*+}D^{+}\omega $$D2∗+D+ω,$$D_{2}^{*0}D^{0}\omega $$D2∗0D0ω,$$B_{2}^{*+}B^{+}\rho $$B2∗+B+ρ,$$B_{2}^{*0}B^{0}\rho $$B2∗0B0ρ,$$B_{2}^{*+}B^{+}\omega $$B2∗+B+ω,$$B_{2}^{*0}B^{0}\omega $$B2∗0B0ω,$$B_{s2}^{*}B_{s}\phi $$Bs2∗Bsϕand$$D_{s2}^{*}D_{s}\phi $$Ds2∗Dsϕin the frame work of three point QCD sum rules(QCDSR). According to these analysis, we calculate their strong form factors which are used to fit into analytical functions of$$Q^{2}$$Q2. Then, we obtain the strong coupling constants by extrapolating these strong form factors into deep time-like regions. As an application of this work, the coupling constants for radiative decays of these heavy tensor mesons are also calculated at the point of$$Q^{2}=0$$Q2=0. With these coupling constants, we finally obtain the radiative decay widths of these tensor mesons.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference71 articles.
1. V.M. Abazov et al., Phys. Rev. Lett. 99, 172001 (2007)
2. T. Aaltonen et al., Phys. Rev. Lett. 100, 082001 (2008)
3. V. Abazov et al., Phys. Rev. Lett. 100, 082002 (2008)
4. T. Aaltonen et al., Phys. Rev. Lett. 102, 10200 (2009)
5. J. Beringer et al., Phys. Rev. D 86, 010001 (2012)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献