Is the magnitude of the Peccei–Quinn scale set by the landscape?

Author:

Baer Howard,Barger Vernon,Sengupta Dibyashree,Serce Hasan,Sinha Kuver,Deal Robert Wiley

Abstract

Abstract The value of the Higgs boson mass plus the lack of signal at LHC13 has led to a naturalness crisis for supersymmetric models. In contrast, rather general considerations of the string theory landscape imply a mild statistical draw towards large soft SUSY breaking terms tempered by the requirement of proper electroweak symmetry breaking where SUSY contributions to the weak scale are not too far from $$m_{weak}\sim 100$$mweak100 GeV. Such a picture leads to the prediction that $$m_h\simeq 125$$mh125 GeV while most sparticles are beyond current LHC reach. Here we explore the possibility that the magnitude of the Peccei–Quinn (PQ) scale $$f_a$$fa is also set by string landscape considerations within the framework of a compelling SUSY axion model. First, we examine the case where the PQ symmetry arises as an accidental approximate global symmetry from a more fundamental gravity-safe $$\mathbb {Z}_{24}^R$$Z24R symmetry and where the SUSY $$\mu $$μ parameter arises from a Kim-Nilles operator. The pull towards large soft terms then also pulls the PQ scale as large as possible. Unless this is tempered by rather severe (unknown) cosmological or anthropic bounds on the density of dark matter, then we would expect a far greater abundance of dark matter than is observed. This conclusion cannot be negated by adopting a tiny axion misalignment angle $$\theta _i$$θi because WIMPs are also overproduced at large $$f_a$$fa. Hence, we conclude that setting the PQ scale via anthropics is highly unlikely. Instead, requiring soft SUSY breaking terms of order the gravity-mediation scale $$m_{3/2}\sim 10$$m3/210–100 TeV places the mixed axion–neutralino dark matter abundance into the intermediate scale sweet zone where $$f_a\sim 10^{11}$$fa1011$$10^{12}$$1012 GeV. We compare our analysis to the more general case of a generic SUSY DFSZ axion model with uniform selection on $$\theta _i$$θi but leading to the measured dark matter abundance: this approach leads to a preference for $$f_a\sim 10^{12}$$fa1012 GeV.

Funder

US Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3