Distortion of surfactant lamellar phases induced by surface roughness

Author:

Nouhi Shirin,Koutsioubas Alexandros,Kapaklis Vassilios,Rennie Adrian R.ORCID

Abstract

AbstractSelf-assembly is a characteristic property of soft matter. Understanding the factors which assist or perturb this process is of great importance in many biological and industrial processes. Amphiphiles self-assemble and order into a variety of structures including well-ordered lamellar phases. The present work uses neutron reflectometry and neutron scattering to explore the effects of both interface roughness and temperature on the lamellar-phase structure of a non-ionic surfactant at a solid/liquid interface. The structure of concentrated solutions of tetraethyleneglycol dodecyl ether has been compared against a smooth surface and one with a roughness of the order of the lamellar spacing. This has been done in order to investigate the role perturbations have on the overall lamellar order, when these have length scales of the order of the interactions between neighboring lamellae. The results showed that the surfactant forms a well-ordered and aligned structure at a smooth surface, extending to a depth of several micrometers from the interface. Increasing the temperature of the sample and subsequent cooling promotes alignment and increases the number of oriented layers at the surface. The same sample forms a significantly less aligned structure against a rough surface that does not align to the same extent, even after heating. The perturbation of the structure caused by thermal fluctuations was found to be much less than that imposed by a small surface roughness.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3