Surfactant-loaded capsules as Marangoni microswimmers at the air–water interface: Symmetry breaking and spontaneous propulsion by surfactant diffusion and advection

Author:

Ender Hendrik,Froin Ann-Kathrin,Rehage Heinz,Kierfeld Jan

Abstract

Abstract We present a realization of a fast interfacial Marangoni microswimmer by a half-spherical alginate capsule at the air–water interface, which diffusively releases water-soluble spreading molecules (weak surfactants such as polyethylene glycol (PEG)), which act as “fuel” by modulating the air–water interfacial tension. For a number of different fuels, we can observe symmetry breaking and spontaneous propulsion although the alginate particle and emission are isotropic. The propulsion mechanism is similar to soap or camphor boats, which are, however, typically asymmetric in shape or emission to select a swimming direction. We develop a theory of Marangoni boat propulsion starting from low Reynolds numbers by analyzing the coupled problems of surfactant diffusion and advection and fluid flow, which includes surfactant-induced fluid Marangoni flow, and surfactant adsorption at the air–water interface; we also include a possible evaporation of surfactant. The swimming velocity is determined by the balance of drag and Marangoni forces. We show that spontaneous symmetry breaking resulting in propulsion is possible above a critical dimensionless surfactant emission rate (Peclet number). We derive the relation between Peclet number and swimming speed and generalize to higher Reynolds numbers utilizing the concept of the Nusselt number. The theory explains the observed swimming speeds for PEG–alginate capsules, and we unravel the differences to other Marangoni boat systems based on camphor, which are mainly caused by surfactant evaporation from the liquid–air interface. The capsule Marangoni microswimmers also exhibit surfactant-mediated repulsive interactions with walls, which can be qualitatively explained by surfactant accumulation at the wall. Graphic Abstract

Funder

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Surfaces and Interfaces,General Materials Science,General Chemistry,Biophysics,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3