Revisiting the concept of activation in supercooled liquids

Author:

Baity-Jesi MarcoORCID,Biroli Giulio,Reichman David R.

Abstract

AbstractIn this work, we revisit the description of dynamics based on the concepts of metabasins and activation in mildly supercooled liquids via the analysis of the dynamics of a paradigmatic glass former between its onset temperature $$T_{\mathrm{o}}$$ T o and mode-coupling temperature $$T_{\mathrm{c}}$$ T c . First, we provide measures that demonstrate that the onset of glassiness is indeed connected to the landscape, and that metabasin waiting time distributions are so broad that the system can remain stuck in a metabasin for times that exceed $$\tau _{\alpha }$$ τ α by orders of magnitude. We then reanalyze the transitions between metabasins, providing several indications that the standard picture of activated dynamics in terms of traps does not hold in this regime. Instead, we propose that here activation is principally driven by entropic instead of energetic barriers. In particular, we illustrate that activation is not controlled by the hopping of high energetic barriers and should more properly be interpreted as the entropic selection of nearly barrierless but rare pathways connecting metabasins on the landscape.

Funder

Simons Foundation

Publisher

Springer Science and Business Media LLC

Subject

Surfaces and Interfaces,General Materials Science,General Chemistry,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3