Deep reinforcement learning for turbulent drag reduction in channel flows

Author:

Guastoni LucaORCID,Rabault Jean,Schlatter Philipp,Azizpour Hossein,Vinuesa Ricardo

Abstract

AbstractWe introduce a reinforcement learning (RL) environment to design and benchmark control strategies aimed at reducing drag in turbulent fluid flows enclosed in a channel. The environment provides a framework for computationally efficient, parallelized, high-fidelity fluid simulations, ready to interface with established RL agent programming interfaces. This allows for both testing existing deep reinforcement learning (DRL) algorithms against a challenging task, and advancing our knowledge of a complex, turbulent physical system that has been a major topic of research for over two centuries, and remains, even today, the subject of many unanswered questions. The control is applied in the form of blowing and suction at the wall, while the observable state is configurable, allowing to choose different variables such as velocity and pressure, in different locations of the domain. Given the complex nonlinear nature of turbulent flows, the control strategies proposed so far in the literature are physically grounded, but too simple. DRL, by contrast, enables leveraging the high-dimensional data that can be sampled from flow simulations to design advanced control strategies. In an effort to establish a benchmark for testing data-driven control strategies, we compare opposition control, a state-of-the-art turbulence-control strategy from the literature, and a commonly used DRL algorithm, deep deterministic policy gradient. Our results show that DRL leads to 43% and 30% drag reduction in a minimal and a larger channel (at a friction Reynolds number of 180), respectively, outperforming the classical opposition control by around 20 and 10 percentage points, respectively.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Surfaces and Interfaces,General Materials Science,General Chemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3