Effect of internal structure and resin deformability on drying rate and stress in convective drying of silica–latex coatings

Author:

Tanaka Hiroaki,Komoda Yoshiyuki,Horie Takafumi,Ohmura Naoto

Abstract

AbstractLatex paint is an aqueous dispersion of nano-sized polymer particles that can form a thin film by itself or mixed with rigid particles. We have developed an apparatus that can simultaneously measure drying rate and stress generation and have investigated the film formation process of a latex-only coating layer under convection drying. In the present study, we adopted the same method to investigate the film formation process of the silica–latex coating layer. As a result, we were able to systematically correlate the drying rate change by the equivalent thickness of latex particles accumulated with silica particles at the drying surface. Furthermore, it is unveiled that the drying rate in the former stage depends on drying temperature, while the drying rate changed to be dominated by silica content after the particle-packing layer was formed over the entire coating layer. On the other hand, the model we proposed for stress generation, considering the temperature effect on latex deformability, was found to be applicable to the present experimental system by replacing a portion of deformable particles with rigid particles. Graphical abstract

Funder

Kobe University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3