The critical temperature of the 2D-Ising model through deep learning autoencoders

Author:

Alexandrou Constantia,Athenodorou Andreas,Chrysostomou Charalambos,Paul Srijit

Abstract

Abstract We investigate deep learning autoencoders for the unsupervised recognition of phase transitions in physical systems formulated on a lattice. We focus our investigation on the 2-dimensional ferromagnetic Ising model and then test the application of the autoencoder on the anti-ferromagnetic Ising model. We use spin configurations produced for the 2-dimensional ferromagnetic and anti-ferromagnetic Ising model in zero external magnetic field. For the ferromagnetic Ising model, we study numerically the relation between one latent variable extracted from the autoencoder to the critical temperature Tc. The proposed autoencoder reveals the two phases, one for which the spins are ordered and the other for which spins are disordered, reflecting the restoration of the ℤ2 symmetry as the temperature increases. We provide a finite volume analysis for a sequence of increasing lattice sizes. For the largest volume studied, the transition between the two phases occurs very close to the theoretically extracted critical temperature. We define as a quasi-order parameter the absolute average latent variable z̃, which enables us to predict the critical temperature. One can define a latent susceptibility and use it to quantify the value of the critical temperature Tc(L) at different lattice sizes and that these values suffer from only small finite scaling effects. We demonstrate that Tc(L) extrapolates to the known theoretical value as L suggesting that the autoencoder can also be used to extract the critical temperature of the phase transition to an adequate precision. Subsequently, we test the application of the autoencoder on the anti-ferromagnetic Ising model, demonstrating that the proposed network can detect the phase transition successfully in a similar way. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference52 articles.

1. P. Broecker, F.F. Assaad, S. Trebst, arXiv:1707.00663 (2017)

2. P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 8823 (2017)

3. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)

4. K. Ch’ng, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)

5. C Giannetti, B Lucini, D Vadacchino, Nucl. Phys. B 944, 114639

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3