Author:
Aghion Stefano,Amsler Claude,Bonomi Germano,Brusa Roberto S.,Caccia Massimo,Caravita Ruggero,Castelli Fabrizio,Cerchiari Giovanni,Comparat Daniel,Consolati Giovanni,Demetrio Andrea,Di Noto Lea,Doser Michael,Evans Craig,Fanì Mattia,Ferragut Rafael,Fesel Julian,Fontana Andrea,Gerber Sebastian,Giammarchi Marco,Gligorova Angela,Guatieri Francesco,Haider Stefan,Hinterberger Alexander,Holmestad Helga,Kellerbauer Alban,Khalidova Olga,Krasnický Daniel,Lagomarsino Vittorio,Lansonneur Pierre,Lebrun Patrice,Malbrunot Chloé,Mariazzi Sebastiano,Marton Johann,Matveev Victor,Mazzotta Zeudi,Müller Simon R.,Nebbia Giancarlo,Nedelec Patrick,Oberthaler Markus,Pacifico Nicola,Pagano Davide,Penasa Luca,Petracek Vojtech,Prelz Francesco,Prevedelli Marco,Rienaecker Benjamin,Robert Jacques,Røhne Ole M.,Rotondi Alberto,Sandaker Heidi,Santoro Romualdo,Smestad Lillian,Sorrentino Fiodor,Testera Gemma,Tietje Ingmari C.,Widmann Eberhard,Yzombard Pauline,Zimmer Christian,Zmeskal Johann,Zurlo Nicola,Antonello Massimiliano
Abstract
Abstract
We describe a multi-step “rotating wall” compression of a mixed cold antiproton–electron non-neutral plasma in a 4.46 T Penning–Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m−3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics