Abstract
Abstract
In nonlinear electromagnetism in vacuum, a classical electromagnetic wave itself can generate another wave. A classical field can become a source for a nonlinear correction via the polarization and magnetization of vacuum. We elucidate that a resonant generation is intrinsic to the theoretical structure of nonlinear electromagnetism. The resonance can take place when the phases, or the cycles of the source and the nonlinear correction match. We demonstrate two specific systems as examples. For a plane wave and constant fields, nonlinear corrective electromagnetic fields are resonantly enhanced with distance. It is shown in a stationary special solution. For more realistic system, we have considered the case of a standing wave in a cavity with an appropriate initial and boundary conditions. As a result, the corrections are resonantly enhanced with time. The resonance effect in the cavity is shown to be observed more effectively by combining a static magnetic flux density. We have evaluated the resonant effect using concrete parameters of current experiments. The demonstrated resonance can be combined with existing proposals to enable experimental detection of nonlinear optical effects of vacuum easier.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献