Charge and energy transfer in ac-driven Coulomb-coupled double quantum dots

Author:

Ludovico María FlorenciaORCID,Capone Massimo

Abstract

Abstract We study the dynamics of charge and energy currents in a Coulomb-coupled double quantum dot system, when only one of the two dots is adiabatically driven by a time-periodic gate that modulates its energy level. Although the Coulomb coupling does not allow for electron transfer between the dots, it enables an exchange of energy between them which induces a time variation of charge in the undriven dot. We describe the effect of electron interactions at low temperature using a time-dependent slave-spin 1 formulation within mean field that efficiently captures the main effects of the strong correlations as well as the dynamical nature of the driving. We find that the currents induced in the undriven dot due to the mutual friction between inter-dot electrons are of the same order as those generated in the adiabatically driven dot. Interestingly, up to 43% of the energy injected by the ac sources can be transferred from the driven dot to the undriven one. We complete our analysis by studying the impact of the Coulomb interaction on the resistance of the quantum dot that is driven by the gate. Graphic abstract

Funder

Ministero dell’Istruzione, dell’Universitàe della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3