Abstract
Abstract
The methodology to simulate transport phenomena in bulk systems is well-established. In contrast, there is no clear consensus about the choice of techniques to model cross-transport phenomena and phoretic transport, mainly because some of the hydrodynamic descriptions are incomplete from a thermodynamic point of view. In the present paper, we use a unified framework to describe diffusio-osmosis(phoresis), and we report non-equilibrium molecular dynamics (NEMD) on such systems. We explore different simulation methods to highlight some of the technical problems that arise in the calculations. For diffusiophoresis, we use two NEMD methods: boundary-driven and field-driven. Although the two methods should be equivalent in the limit of very weak gradients, we find that finite Peclet-number effects are much stronger in boundary-driven flows than in the case where we apply fictitious color forces.
Graphic abstract
Funder
H2020 Future and Emerging Technologies
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献