Liquid intrusion in and extrusion from non-wettable nanopores for technological applications

Author:

Giacomello Alberto,Casciola Carlo Massimo,Grosu Yaroslav,Meloni SimoneORCID

Abstract

AbstractIn this article, we review some recent theoretical results about intrusion and extrusion of non-wetting liquids in and out of cavities of nanotextured surfaces and nanoporous materials. Nanoscale confinement allows these processes to happen at conditions which significantly differ from bulk phase coexistence. In particular, the pressure at which a liquid penetrates in and exits from cavities is of interest for many technological applications such as energy storage, dissipation, and conversion, materials with negative compressibility, ion channels, liquid chromatography, and more. Notwithstanding its technological interest, intrusion/extrusion processes are difficult to understand and control solely via experiments: the missing step is often a simple theory capable of providing a microscopic interpretation of the results, e.g., of liquid porosimetry or other techniques used in the field, especially in the case of complex nanoporous media. In this context, simulations can help shedding light on the relation between the morphology of pores, the chemical composition of the solids and liquids, and the thermodynamics and kinetics of intrusion and extrusion. Indeed, the intrusion/extrusion kinetics is determined by the presence of free energy barriers and special approaches, the so-called rare event techniques, must be used to study these processes. Usually, rare event techniques are employed to investigate processes occurring in relatively simple molecular systems, while intrusion/extrusion concerns the collective dynamics of hundreds to thousands of degrees of freedom, the molecules of a liquid entering in or exiting from a cavity, which, from the methodological point of view, is itself a challenge.

Funder

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3