Abstract
Abstract
The q-neighbor Ising model is investigated on homogeneous random graphs with a fraction of edges associated randomly with antiferromagnetic exchange integrals and the remaining edges with ferromagnetic ones. It is a nonequilibrium model for the opinion formation in which the agents, represented by two-state spins, change their opinions according to a Metropolis-like algorithm taking into account interactions with only a randomly chosen subset of their q neighbors. Depending on the model parameters in Monte Carlo simulations, phase diagrams are observed with first-order ferromagnetic transition, both first- and second-order ferromagnetic transitions and second-order ferromagnetic and spin-glass-like transitions as the temperature and fraction of antiferromagnetic exchange integrals are varied; in the latter case, the obtained phase diagrams qualitatively resemble those for the dilute spin-glass model. Homogeneous mean-field and pair approximations are extended to take into account the effect of the antiferromagnetic exchange interactions on the ferromagnetic phase transition in the model. For a broad range of parameters, critical temperatures for the first- or second-order ferromagnetic transition predicted by the homogeneous pair approximation show quantitative agreement with those obtained from Monte Carlo simulations; significant differences occur mainly in the vicinity of the tricritical point in which the critical lines for the second-order ferromagnetic and spin-glass-like transitions meet.
Graphic abstract
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献