Abstract
Abstract
In the past two and a half decades machine learning potentials have evolved from a special purpose solution to a broadly applicable tool for large-scale atomistic simulations. By combining the efficiency of empirical potentials and force fields with an accuracy close to first-principles calculations they now enable computer simulations of a wide range of molecules and materials. In this perspective, we summarize the present status of these new types of models for extended systems, which are increasingly used for materials modelling. There are several approaches, but they all have in common that they exploit the locality of atomic properties in some form. Long-range interactions, most prominently electrostatic interactions, can also be included even for systems in which non-local charge transfer leads to an electronic structure that depends globally on all atomic positions. Remaining challenges and limitations of current approaches are discussed.
Graphic Abstract
Funder
Georg-August-Universität Göttingen
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献