Elastic properties and mechanical stability of bilayer graphene: molecular dynamics simulations

Author:

Herrero Carlos P.ORCID,Ramírez Rafael

Abstract

Abstract Graphene has become in last decades a paradigmatic example of two-dimensional and so-called van-der-Waals layered materials, showing large anisotropy in their physical properties. Here, we study the elastic properties and mechanical stability of graphene bilayers in a wide temperature range by molecular dynamics simulations. We concentrate on in-plane elastic constants and compression modulus, as well as on the atomic motion in the out-of-plane direction. Special emphasis is placed upon the influence of anharmonicity of the vibrational modes on the physical properties of bilayer graphene. We consider the excess area appearing in the presence of ripples in graphene sheets at finite temperatures. The in-plane compression modulus of bilayer graphene is found to decrease for rising temperature, and results to be higher than for monolayer graphene. We analyze the mechanical instability of the bilayer caused by an in-plane compressive stress. This defines a spinodal pressure for the metastability limit of the material, which depends on the system size. Finite-size effects are described by power laws for the out-of-plane mean-square fluctuation, compression modulus, and spinodal pressure. Further insight into the significance of our results for bilayer graphene is gained from a comparison with data for monolayer graphene and graphite. Graphic abstract

Funder

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3