Stretched-exponential melting of a dynamically frozen state under imprinted phase noise in the ising chain in a transverse field

Author:

Roychowdhury KrishanuORCID,Das Arnab

Abstract

Abstract The concept of dynamical freezing is a phenomenon where a suitable set of local observables freezes under a strong periodic drive in a quantum many-body system. This happens because of the emergence of approximate but perpetual conservation laws when the drive is strong enough. In this work, we probe the resilience of dynamical freezing to random perturbations added to the relative phases between the interfering states (elements of a natural basis) in the time-evolving wave function after each drive cycle. We study this in an integrable Ising chain in a time-periodic transverse field. Our key finding is, that the imprinted phase noise melts the dynamically frozen state, but the decay is “slow”: a stretched-exponential decay rather than an exponential one. Stretched-exponential decays (also known as Kohlrausch relaxation) are usually expected in complex systems with time-scale hierarchies due to strong disorders or other inhomogeneities resulting in jamming, glassiness, or localization. Here we observe this in a simple translationally invariant system dynamically frozen under a periodic drive. Moreover, the melting here does not obliterate the entire memory of the initial state but leaves behind a steady remnant that depends on the initial conditions. This underscores the stability of dynamically frozen states. Graphical abstract

Funder

Max Planck Institute for the Physics of Complex Systems

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3