Robustness of steady state and stochastic cyclicity in generalized coalescence-fragmentation models

Author:

Fagan Brennen T.ORCID,MacKay Niall J.,Wood A. Jamie

Abstract

Abstract Processes of coalescence and fragmentation are used to understand the time-evolution of the mass distribution of various systems and may result in a steady state or in stable deterministic or stochastic cycles. Motivated by applications in insurgency warfare we investigate coalescence-fragmentation systems. We begin with a simple model of size-biased coalescence accompanied by shattering into monomers. Depending on the parameters this model has an approximately power-law-distributed steady state or stochastic cycles of alternating gelation and shattering. We conduct stochastic simulations of this model and its generalizations to include different kernel types, accretion and erosion, and various distributions of non-shattering fragmentation. Our central aim is to explore the robustness of the steady state and gel-shatter stochastic cycles to these variations. We show that an approximate power-law steady state persists with the addition of accretion and erosion, and with partial rather than total shattering. However, broader distributions of fragment sizes typically vitiate both the power law steady state and gel-shatter cyclicity. This work clarifies features shown in coalescence/fragmentation model simulations and elucidates the relationship between the microscopic dynamics and observed phenomena in this widely applicable interdisciplinary model type. Graphical abstract

Funder

University of York Department of Mathematics

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3