Dynamical properties of a small heterogeneous chain network of neurons in discrete time

Author:

Ghosh IndranilORCID,Nair Anjana S.,Fatoyinbo Hammed Olawale,Muni Sishu Shankar

Abstract

AbstractWe propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark–Sacker, double Neimark–Sacker, flip- and fold-Neimark–Sacker, and 1 : 1 and 1 : 2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy.

Funder

Massey University

Publisher

Springer Science and Business Media LLC

Reference97 articles.

1. D.M. Lovinger, Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res. Health 31(3), 196–214 (2008)

2. E.M. Izhikevich, Dynamical systems in neuroscience: the Geometry of Excitability and Bursting (MIT press, London, 2007)

3. W. Gerstner, W.M. Kistler, R. Naud, L. Paninski, Neuronal dynamics: from single neurons to networks and models of cognition (Cambridge University Press, Cambridge, 2014)

4. F. He, Y. Yang, Nonlinear system identification of neural systems from neurophysiological signals. Neuroscience 458, 213–228 (2021)

5. H.O. Fatoyinbo, S.S. Muni, A. Abidemi, Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model. Eur. Phys. J. B 95(4), 1–15 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3