Advancing tribological simulations of carbon-based lubricants with active learning and machine learning molecular dynamics

Author:

Pacini Alberto,Ferrario Mauro,Loehle Sophie,Righi M. CleliaORCID

Abstract

AbstractThe need to move toward more sustainable lubricant materials has sparked an ever growing interest on the tribological performances of additives based on environmentally friendly molecules, such as carbon-based compounds, and green liquid media as aqueous solutions. The prediction of the solubility of the additives into the liquid and the tribochemistry of decomposition and polymerization of the additive molecules under harsh conditions is essential for understanding the atomistic mechanisms leading to the formation in situ of the carbon-based lubricious tribofilms so effective in reducing friction and wear at solid interfaces. To this extent, the application of tools like ab initio molecular dynamics based on first-principle density functional theory is severely hindered by the size of the systems of interests and the need to simulate their dynamics over relatively long times. To enable tribological simulations with quantum accuracy for a first time, we develop a workflow for smart configuration sampling in active learning, to obtain machine learning interatomic potentials which are shown to be sufficiently robust and accurate also in the characteristic harsh conditions generated by high loads and shear rates. Focusing on glycerol rich lubricants, we apply this active learning strategy to generate a neural network potential to simulate the formation and behavior of nanometer thick molecular tribofilms. The simulations reveal the superior accuracy of the machine learning approach with respect to classical molecular dynamics with reactive force fields, and pave the way for more promising in depth exploration of novel carbon-based lubricants.

Funder

H2020 European Research Council

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3