Hamiltonian, geometric momentum and force operators for a spin zero particle on a curve: physical approach

Author:

Shikakhwa M. S.ORCID,Chair N.

Abstract

AbstractThe Hamiltonian for a spin zero particle that is confined to a 1D curve embedded in the 3D space is constructed. Confinement is achieved by starting with the particle living in a small tube surrounding the curve, and assuming an infinitely strong normal force that squeezes the thickness of the tube to zero, eventually pinning the particle to the curve. We follow the new approach that we applied to confine a particle to a surface, in that we start with an expression for the 3D momentum operators whose components along and normal to the curve directions are separately Hermitian. The kinetic energy operator expressed in terms of the momentum operator in the normal direction is then a Hermitian operator in this case. When this operator is dropped and the thickness of the tube surrounding the curve is set to zero, one automatically gets the Hermitian curve Hamiltonian that contains the geometric potential term as expected. It is demonstrated that the origin of this potential lies in the ordering or symmetrization of the original 3D momentum operators in order to render them Hermitian. The Hermitian momentum operator for the particle as it is confined to the curve is also constructed and is seen to be similar to what is known as the geometric momentum of a particle confined to a surface in that it has a term proportional to the curvature that is along the normal to the curve. The force operator of the particle on the curve is also derived, and is shown to reduce, for a curve with a constant curvature and torsion, to a -apparently- single component normal to the curve that is a symmetrization of the classical expression plus a quantum term. All the above quantities are then derived for the specific case of a particle confined to a cylindrical helix embedded in 3D space.

Funder

TED University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3