Numerical intercomparison of PHITS and Geant4 Monte Carlo codes for fast neutron inelastic scattering applications

Author:

Meleshenkovskii I.ORCID,Van den Brandt K.,Ogawa T.,Datema C.,Mauerhofer E.

Abstract

AbstractFast neutron inelastic scattering is a promising non-destructive assay technique for various analytical applications. As an active neutron interrogation technique, its performance is a function of various different factors and parameters that require optimization. Monte Carlo simulation codes are indispensable for such tasks. However, the internal simulation routines implemented in such codes can rely on different physical models that can yield discrepancies in the simulation results. In this work we conduct an intercomparison of PHITS and Geant4 codes performance in application to fast neutron inelastic scattering simulations. The goal of this paper is twofold. First, we explain the differences in code configuration with respect to gamma and neutron transport, as well as internal simulation routines. Second, we conduct a performance assessment of the two codes using two different measurement configurations. One configuration consisted of a source of gamma rays in a broad energy range (100–9000 keV) and a CeBr3 detector. The other configuration consisted of a monoenergetic 2.5 MeV fast neutron source, Fe, Nd, Dy, B targets and a CeBr3 detector. Selected simulation configurations were chosen with a goal to compare the performance differences in neutron energy distribution, produced prompt gamma rays and energy deposition in CeBr3 detector between the two codes. Results of our study reveal a good coherence of both codes performance in the application of fast neutron inelastic scattering simulations. The simulation geometries and observed differences are described in detail.

Funder

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3