Shutdown dose rate experiment at JET during DTE2

Author:

Fonnesu N.ORCID,Loreti S.,Villari R.,Flammini D.,Mariano G.,Batistoni P.,Colangeli A.,Moro F.,Previti A.,Klix A.,

Abstract

AbstractThe EUROfusion activities on the technological exploitation of deuterium–tritium (DT) operation at JET (started within the work package JET3 and continued under PrIO) were established to maximize the scientific and technological return of DTE2 campaign occurred in the second part of 2021. In particular, the aim of the NEXP sub-project was to take advantage of the expected significant neutron production during DTE2 to validate the numerical tools used for neutron streaming and shutdown dose rate (SDR) calculation for ITER through the comparison between numerical predictions and measurements. In the frame of SDR activity, a dosimetry system to measure the dose rate and based on some ionization chambers (ICs) was installed in the torus hall and upgraded both hardware and software since 2015 by exploiting the previous DD and TT campaigns. Two spherical 1-L air-vented ICs had been installed in some ex-vessel positions close to the horizontal ports of the tokamak in octants 1 and 2 and a third IC, suitable for higher dose rates, was then added in octant 1. As for SDR calculation, numerical tools employed rely on MCNP code for radiation transport and in this regard the MCNP model has been updated to include the last detector installed in octant 1. The present work is dedicated to the analysis of dose rate measurements carried out during DTE2 in the inter-pulse periods and at the shutdown. Influence quantities and error sources are analyzed to calculate the dose rate from raw signal and experimental uncertainty. Some experimental points are chosen and employed for a preliminary comparison with numerical predictions obtained from three-dimensional simulations with Advanced D1S tool. The results are presented and discussed with the major objective to contribute to the optimization of the planned SDR code validation.

Funder

Euratom Research and Training Programme

Ente per le Nuove Tecnologie, l'Energia e l'Ambiente

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3