Abstract
AbstractWe study the motion of superfluid vortices with filled massive cores. Previous point-vortex models already pointed out the impact of the core mass on the vortex dynamical properties, but relied on an assumption that is questionable in many physical systems where the immiscibility condition is barely satisfied: the fact that the massive core always lays at the very bottom of the effective confining potential constituted by the hosting vortex. Here, we relax this assumption and present a new point-vortex model where quantum vortices are harmonically coupled to their massive cores. We thoroughly explore the new dynamical regimes offered by this improved model; we then show that the functional dependence of the system normal modes on the microscopic parameters can be correctly interpreted only within this new generalized framework. Our predictions are benchmarked against the numerical simulations of coupled Gross–Pitaevskii equations for a realistic mixture of atomic Bose–Einstein condensates.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Fluid Flow and Transfer Processes
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献