Magnetization in superconducting corrector magnets and impact on luminosity–calibration scans in the Large Hadron Collider

Author:

Chmielińska AgnieszkaORCID,Fiscarelli Lucio,Hostettler Michi,Kozanecki Witold,Russenschuck Stephan,Todesco Ezio

Abstract

AbstractSuperconducting accelerator magnets have a nonlinear dependence of field on current due to the magnetization associated with the iron or with persistent currents in the superconducting filaments. This also gives rise to hysteresis phenomena that create a dependence of the field on the powering history. Magnetization effects are of particular importance for luminosity–calibration scans in the Large Hadron Collider, during which a small number of Nb–Ti superconducting orbit correctors are excited at low field and with frequent flipping of the sign of the current ramp. This paper focuses on the analysis of special measurements carried out to estimate these nonlinear effects under the special cycling conditions used in these luminosity scans. For standard powering cycles, we evaluate the effect of the main magnetization loop; for complex operational schemes, magnetization-branch transitions occur that depend on the details of the current cycle. The modelling of these effects is not included in the magnetic field prediction software currently implemented in the LHC control system; here we present an approach to predict the transitions between the main magnetization branches. The final aim is to estimate the impact of magnetic hysteresis on the accuracy of luminosity-calibration scans.

Funder

CERN

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3