Detecting topological phases in the square–octagon lattice with statistical methods

Author:

Wunderlich Paul,Ferrari FrancescoORCID,Valentí Roser

Abstract

AbstractElectronic systems living on Archimedean lattices such as kagome and square–octagon networks are presently being intensively discussed for the possible realization of topological insulating phases. Coining the most interesting electronic topological states in an unbiased way is however not straightforward due to the large parameter space of possible Hamiltonians. A possible approach to tackle this problem is provided by a recently developed statistical learning method (Mertz and Valentí in Phys Rev Res 3:013132, 2021. https://doi.org/10.1103/PhysRevResearch.3.013132), based on the analysis of a large data sets of randomized tight-binding Hamiltonians labeled with a topological index. In this work, we complement this technique by introducing a feature engineering approach which helps identifying polynomial combinations of Hamiltonian parameters that are associated with non-trivial topological states. As a showcase, we employ this method to investigate the possible topological phases that can manifest on the square–octagon lattice, focusing on the case in which the Fermi level of the system lies at a high-order van Hove singularity, in analogy to recent studies of topological phases on the kagome lattice at the van Hove filling.

Funder

Deutsche Forschungsgemeinschaft

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3