Low-energy α-particle irradiation of polymeric-based nanofiller

Author:

El-Malawy Doaa,Hassan H. E.ORCID,El Ghazaly M.,Abdel Samad S.,Al-Abyad M.

Abstract

AbstractIn this study, the induced defects and modifications enhanced by alpha particle on CdO and ZnSe-doped polymethyl methacrylate (PMMA) were investigated. Casting method was used to prepare three sets of thin polymeric sheets doped with variable concentrations of the selected fillers. The prepared CdO and ZnSe particles were in the range 3–21 nm. The samples were irradiated with 4.5 MeV α-particle emitted from 241Am radioactive source at gradually increased fluence. The enhanced change that occurred in the physical properties for both types of samples due to α-particle irradiation was measured using Fourier transform infrared (FTIR), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), photoluminescence (PL) spectroscopy. All the pristine samples exhibited two separated direct band gaps around 4.0 eV and 4.6 eV, while the irradiated samples showed decreasing for the first band gap up to 3.71 and the second gap remained almost unchanged. The three investigated sets displayed PL emission peaks within the range 270–700 nm. The intensity of the PL peaks was increased by increasing the filler concentration. The net PL was quantified using the area under the emission peaks which showed that α-particle causes interchangeable defects and cross-linking processes. The formation of C–H and O–H function groups due to α-particle interactions was confirmed by FTIR analysis. The results revealed that the filler–polymer interface has a great impact on the formed defects which control the observed characteristics in the polymeric composite medium. The presented data are very helpful for α-particle dosimetric applications using these types of polymeric composites.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3