Abstract
AbstractPhonon properties of ultrathin Si nanowires in [110] direction have been calculated by density functional perturbation theory. Several samples with varying diameters ranging from 0.38 to 1.5 nm have been investigated. It is found that the frequencies of optical phonons at the zone center increase with decrease in size of the nanowire, giving rise to avoided-crossing with longitudinal acoustic phonons. This feature determines a corresponding increase in the scattering rates and flattening of the longitudinal acoustic mode. More specifically, a remarkable change in scattering rates is shown for decreasing diameter. Results of the thermal conductivity are much lower with respect to bulk Si and are found between 40 and 119 $$\hbox {Wm}^{-1}$$
Wm
-
1
$$\hbox {K}^{-1}$$
K
-
1
, also providing evidence of increasing thermal conductivity with increase in diameter. This effect is attributed to several changes in the phonon dispersions. Finally, it is shown that approximating the boundary scattering of phonons by Casimir scattering leads to a severe underestimation of the thermal conductivity in these systems.
Funder
MIUR
NRRP
Università degli Studi di Cagliari
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Fluid Flow and Transfer Processes
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献