Experimental investigation of suddenly expanded flow at sonic and supersonic Mach numbers using semi-circular ribs: a comparative study between experimental, single layer, deep neural network (SLNN and DNN) models

Author:

Khan Ambareen,Rajendran Parvathy,Sidhu Junior Sarjit Singh,Sharifpur MohsenORCID

Abstract

AbstractIn this work, we present the findings of the experimental study conducted in a rectangular duct at sonic and supersonic Mach numbers using passive control in the form of semi-circular ribs. Tests are conducted at sonic Mach number and four supersonic Mach numbers. The supersonic Mach numbers of the study are 1.5, 1.8, 2.2, and 2.5. The flow from the nozzles is discharged into the enlarged duct. The ribs are placed at 28 mm (1D), 56 mm (2D), 84 mm (3D), and 112 mm (4D) from the base to find the effect of the control mechanism on the flow field and the base pressure. The ribs of 6, 8, and 10 mm diameter are used to control the base pressure and ultimately the base drag. At Mach 2.2 and 2.5, control is not effective because the nozzles are over-expanded. These results reiterate the findings from the literature that the control is effective whether passive or active when nozzles flow under the influence of a favorable pressure gradient. The same is evident from the results at Mach 1.5 and 1.8. The NPRs at these Mach numbers are such that nozzles are under, correctly, and under expanded. When nozzles are operated for under expanded case, the control results in an increase in the base pressure when passive control is employed. These highly complex data are predicted using a single-layered neural network and a deep-layer neural network to save time and make it cost-effective, which shows that the data can be predicted with an accuracy of 0.88–0.99. The proposed models can predict the highly sensitive pressure terms for aerodynamic flows.

Funder

University of Pretoria

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3