Towards the development of a polymer-based assembly for cryogenic detectors for neutrino-less double beta decay

Author:

Biassoni MatteoORCID,Brofferio Chiara,Faverzani Marco,Ferri Elena,Nutini Irene,Pettinacci Valerio,Pozzi Stefano,Ghislandi Stefano,Quitadamo Simone

Abstract

AbstractCryogenic single-particle detectors are devices, operated close to absolute zero, widely used in current and future generation detectors for the search for rare particle physics processes, for example neutrino-less double beta decay. Traditionally, these detectors are assembled in copper structures inside dilution refrigerators. The use of copper, however, is expected to become a limiting factor on the path towards the background reduction needed for future generation projects. Its high density and large Z make it an effective target where gamma-rays produced by radioactive contaminants can lose part of their energy undetected, and subsequently be measured as sensitivity-spoiling spurious signals in the region of interest of the energy spectrum. We present here a new method of building assemblies for kg-scale cryogenic single particle detectors based on low Z, low density additive manufacturing-compatible polymers that can in the future be doped with scintillating compounds thus making them an active component of the experimental setup. Additive manufacturing overcomes the limitations, imposed by traditional techniques, in the design of the structures. The assembly geometry can therefore be driven by the combined needs for reduction of mass and optimization of light production and collection. The experimental setup and the performance of the detectors in terms of energy resolution and temperature stability are described.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3