Design and implementation of a seismic Newtonian noise cancellation system for the Virgo gravitational-wave detector
-
Published:2024-01-13
Issue:1
Volume:139
Page:
-
ISSN:2190-5444
-
Container-title:The European Physical Journal Plus
-
language:en
-
Short-container-title:Eur. Phys. J. Plus
Author:
Koley SoumenORCID, Harms Jan, Allocca Annalisa, Badaracco Francesca, Bertolini Alessandro, Bulik Tomasz, Calloni Enrico, Cieslar Marek, De Rosa Rosario, Errico Luciano, Esposito Marina, Fiori Irene, Hild Stefan, Idzkowski Bartosz, Masserot Alain, Mours Benoît, Paoletti Federico, Paoli Andrea, Pietrzak Mateusz, Rei Luca, Rolland Loïc, Singha Ayatri, Suchenek Mariusz, Suchinski Maciej, Tringali Maria Concetta, Ruggi Paolo
Abstract
AbstractTerrestrial gravity perturbations caused by seismic fields produce the so-called Newtonian noise in gravitational-wave detectors, which is predicted to limit their sensitivity in the upcoming observing runs. In the past, this noise was seen as an infrastructural limitation, i.e., something that cannot be overcome without major investments to improve a detector’s infrastructure. However, it is possible to have at least an indirect estimate of this noise by using the data from a large number of seismometers deployed around a detector’s suspended test masses. The noise estimate can be subtracted from the gravitational-wave data, a process called Newtonian noise cancellation (NNC). In this article, we present the design and implementation of the first NNC system at the Virgo detector as part of its AdV+ upgrade. It uses data from 110 vertical geophones deployed inside the Virgo buildings in optimized array configurations. We use a separate tiltmeter channel to test the pipeline in a proof-of-principle. The system has been running with good performance over months.
Funder
PRIN 2017 Research Program Framework AstroCENT EU Horizon 2020 Research and Innovation programme Gran Sasso Science Institute - GSSI
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., LIGO scientific collaboration and Virgo collaboration. Phys. Rev. Lett. 116, 131103 (2016). https://doi.org/10.1103/PhysRevLett.116.131103 2. J. Aasi, B.P. Abbott, R. Abbott, T. Abbott, M.R. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Class. Quantum Grav. 32, 074001 (2015) 3. F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin et al., Class. Quantum Grav. 32, 024001 (2014) 4. R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, et al. (LIGO Scientific Collaboration and Virgo Collaboration and KAGRA Collaboration) (2021), https://arxiv.org/abs/2111.03606 5. F. Acernese, T. Adams, K. Agatsuma, L. Aiello, A. Allocca, A. Amato, S. Antier, N. Arnaud, S. Ascenzi, P. Astone et al., J. Phys: Conf. Ser. 1342, 012010 (2020). https://doi.org/10.1088/1742-6596/1342/1/012010
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|