Distance sensitivity of thermal light second-order interference beyond spatial coherence

Author:

Pepe Francesco V.ORCID,Scala Giovanni,Chilleri Gabriele,Triggiani Danilo,Kim Yoon-Ho,Tamma Vincenzo

Abstract

AbstractWe demonstrate the distance sensitivity of thermal light second-order interference beyond spatial coherence. This kind of interference, emerging from the measurement of the correlation between intensity fluctuations on two detectors, is sensitive to the distances separating a remote mask from the source and the detector, even when such information cannot be retrieved by first-order intensity measurements. We show how the sensitivity to such distances is intimately connected to the degree of correlation of the measured interference pattern in different experimental scenarios and independently of the spectral properties of light. Remarkably, in specific configurations, sensitivity to the distances of remote objects can be preserved even in the presence of turbulence. Unlike in previous schemes, such a distance sensitivity is reflected in the fundamental emergence of new critical parameters which benchmark the degree of second-order correlation, describing the counterintuitive emergence of spatial second-order interference not only in the absence of (first-order) coherence at both detectors but also when first-order interference is observed at one of the two detectors.

Funder

Office of Naval Research

Ministry of Science and ICT of Korea

National Research Foundation of Korea

Istituto Nazionale di Fisica Nucleare

Narodowe Centrum Nauki

International Centre for Theory of Quantum Technologies

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3