Abstract
AbstractMultifunctional nanoparticles NPs with material composition GdFe0.9M0.1O3; M = Ag, Co, and Cr have successfully been synthesized using the citrate auto-combustion technique. The single phase of the orthorhombic perovskite structure is ratified from the XRD data. The structural, magnetic, and thermoelectric power of the samples along with the results of antibacterial activities are reported in the present manuscript. The variation in the magnetization is argued in view of the strength and type of exchange interaction as well as buckling of the < BO6 > octahedron. The super exchange interaction between the Fe–O–Fe and the Cr–O–Cr and the randomness of Cr ions in the host lattice site are the main reasons behind the weak ferromagnetism obtained from GdFe0.9Cr0.1O3. Ferroelectricity and antiferromagnetism have a dissimilar origin and appear independently. The origin of antiferromagnetism is the spin canting of the B ions. However, the origin of the ferroelectric properties is the hybridization between B cations and O2− anion. The use of silver metal particles as antibacterial agents is noteworthy due to their advantages in terms of chemical stability, efficacy and long-term durability. These advantages can be extended by considering the relatively low toxicity of these particles to the human body compared to other inorganic metals.
Funder
Academy of Scientific Research and Technology
Cairo University
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献