Efficiency of combined MA-XRF and CXRF to give nondestructive insights about changes of a historical painting

Author:

Tapia José,Eveno Myriam,Calligaro Thomas,Pichon Laurent,Laval Eric,Ravaud Elisabeth,Reiche InaORCID

Abstract

AbstractHistorical paintings with important iconographical changes represent an analytical challenge. Considering the case study of a fifteenth-century French painting studied during its restoration, the efficiency of a combined noninvasive approach of two-dimensional scanning macro-X-ray fluorescence imaging (MA-XRF) and a laboratory-based depth-resolved confocal micro-X-ray fluorescence (CXRF) is discussed. Large chemical maps of several elements were obtained by MA-XRF, enabling the identification of zones of interest representing changes in the painting composition. In these areas, depth profiles were measured with CXRF, allowing to evidence overlaying paint layers. The advantages of this technique are that it can give direct information on the stratigraphy of paint layers in a nondestructive way and can reduce the sampling needed, as well as increase the locations analyzed (in our study twenty-two depth-resolved scans). These results complement information obtained by scanning electron microscopy coupled with an energy-dispersive X-ray analyzing system (SEM–EDX) on three cross-sectional samples taken in the areas of interest. Additionally, the three cross sections of the painting were studied by CXRF lateral scans (y) in order to evaluate the efficiency of the CXRF analyses against SEM–EDX. The study shows the benefits of the combination of MA-XRF and CXRF for analyzing painting compositions, as such a high number of cross sections would have been impossible to sample. From an art-historical and conservation perspective, this combined study provides an understanding of the original painting’s paint sequence and its later retouches, helping to make informed conservation treatment decisions. Graphic Abstract

Funder

ANR DepthPaint

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3