Nuclear data evaluation for decay heat analysis of spent nuclear fuel over 1–100 k year timescale

Author:

Doran Hannah R.ORCID,Cresswell Alan J.ORCID,Sanderson David C. W.ORCID,Falcone GioiaORCID

Abstract

AbstractAccurate nuclear data are essential in the evaluation of decay heat from spent nuclear fuel (SNF). The accuracy of such data was assessed using an approach that compares values reported in different evaluated libraries and determines whether discrepancies reflect inaccuracies in primary data. A short list of 43 isotopes which are most significant to SNF decay heat calculations over 1–100 k years was produced by combining generic reactor inventory code with decay heat analysis for undifferentiated SNF. Decay properties (half-lives and decay energies) and neutron interactions (cross section and fission yields) were compared from 6 evaluated libraries. Fission product (FP) discrepancies identified are 90Sr half-life, where inclusion of a single measurement significantly reduces the evaluated value; 95mNb beta energy, where DDEP evaluation omits the decay to the 95Mo ground state; 99Tc beta energy, where evaluations differ by approximately 10% with a variety of shape factors used; 126Sb/126mSb beta (JEF2.2/3.1.1/3.3) and electron energies (JEFF3.1.1), where intensity differences are reported; and 137Cs beta energy, where ENDF/B-VIII.0 and JEF3.3 evaluations use incorrect shape factors. For actinides, the major discrepancies identified were 237Np alpha energy (JEF2.2/3.1.1) and 225Ac electron energies (ENDF/B-VIII.0) but overall show less discrepancies during long-term disposal (0.1–100 ky) compared to FP’s during interim storage (1–100 years). Further assessments of the 90Sr half-life and the best shape factor for the 99Tc beta decay are needed to improve future decay heat analyses, which are important for designing future stores and evaluating schemes for possible heat recovery.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3