The possibility of an appropriate neutron beam achievement for medical purposes based on GEANT4 calculations

Author:

Ivanyan V.ORCID

Abstract

AbstractProton-induced reactions on the 9Be target are considered as a neutron source, and dependence of neutron yield on target thicknesses is investigated. The optimal thickness of the 9Be target with the design and optimization characteristics of a beam shaping assembly (BSA) for neutron flux from the thick target is studied with the GEANT4 program. To create the realistic model of the experiment, there are inserted two physics lists for nuclear and electromagnetic reactions. To get a high flux of neutrons had taken into account usage of special materials as moderators on the base of (n, 2n) nuclear reactions, as well as, moderators which will decrease the energy of neutrons to achieve the appropriate thermal/epithermal neutron flux. The creation of the system, which must be made from reflectors and moderators, is a necessity to explore the possibility of an appropriate neutron flux achievement for medical purposes, especially for boron neutron capture therapy (BNCT). GEANT4 simulations of this scientific paper describe the study of IBA’s C18/18 cyclotron-based neutron sources and its possible usage for therapies.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Monte Carlo model of the Dingo thermal neutron imaging beamline;Scientific Reports;2023-10-13

2. GEANT4 simulations of the neutron beam characteristics for 9Be/7Li targets bombarded by the low energy protons;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3