Quantum Poker—a game for quantum computers suitable for benchmarking error mitigation techniques on NISQ devices

Author:

Fuchs Franz G.,Falch Vemund,Johnsen Christian

Abstract

AbstractQuantum computers are on the verge of becoming a commercially available reality. They represent a paradigm shift in computing, with a steep learning gradient. The creation of games is a way to ease the transition for beginners. We present a game similar to the Poker variant Texas hold ’em with the intention to serve as an engaging pedagogical tool to learn the basics rules of quantum computing. The concepts of quantum states, quantum operations and measurement can be learned in a playful manner. The difference to the classical variant is that the community cards are replaced by a quantum register that is “randomly” initialized, and the cards for each player are replaced by quantum gates, randomly drawn from a set of available gates. Each player can create a quantum circuit with their cards, with the aim to maximize the number of 1’s that are measured in the computational basis. The basic concepts of superposition, entanglement and quantum gates are employed. We provide a proof-of-concept implementation using Qiskit (Aleksandrowicz et al. in An open-source framework for quantum computing, 2019). A comparison of the results for the created circuits using a simulator and IBM machines is conducted, showing that error rates on contemporary quantum computers are still very high. For the success of noisy intermediate scale quantum (NISQ) computers, improvements on the error rates and error mitigation techniques are necessary, even for simple circuits. We show that quantum error mitigation (QEM) techniques can be used to improve expectation values of observables on real quantum devices.

Funder

SINTEF AS

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference20 articles.

1. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F.J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, J.M. Chow, A.D. Córcoles-Gonzales, A.J. Cross, A. Cross, J. Cruz-Benito, C. Culver, S. De La Puente González, E. De La Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I.F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B.G. Gago, J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F.J. Martín-Fernández, D.T. McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D.M. Rodríguez, G. Nannicini, P. Nation, P. Ollitrault, L.J. O’Riordan, H. Paik, J. Pérez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A.R. Davila, R.H.P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi, S. Sivarajah, J.A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C. Vuillot, J.A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wörner, I.Y. Akhalwaya, C. Zoufal, Qiskit: an open-source framework for quantum computing (2019)

2. J.I. Colless, V.V. Ramasesh, D. Dahlen, M.S. Blok, M.E. Kimchi-Schwartz, J.R. McClean, J. Carter, W.A. de Jong, I. Siddiqi, Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8(1), 1 (2018). https://doi.org/10.1103/physrevx.8.011021

3. S. Endo, S.C. Benjamin, Y. Li, Practical quantum error mitigation for near-future applications. Phys. Rev. X 8(3), 1 (2018). https://doi.org/10.1103/physrevx.8.031027

4. D. Gottesman, Stabilizer Codes and Quantum Error Correction. arXiv preprint arxiv:quant-ph/9705052 (1997)

5. T. Itoko, R. Raymond, T. Imamichi, A. Matsuo, Optimization of quantum circuit mapping using gate transformation and commutation. Integration 70, 43–50 (2020). https://doi.org/10.1016/j.vlsi.2019.10.004

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3