Abstract
AbstractSince the first particle accelerator’s construction in 1931, an exponential spread of these machines occurred worldwide, in different kinds of applications. Nowadays, these are mainly used for industrial (60%) and medical (35%) purposes and for scientific research (5%). High energy secondary mixed fields produced by the particle beams interaction with matter imply a complex environmental dosimetry and special radiation protection regulations able to guarantee workers and population safety. In the medical field, this aspect is particularly emphasized in hadrontherapy centres, where high energy charged particles such as protons and carbon ions modify environmental doses, with a significant increase in the neutron contribution. This work proposes a technique to identify points of losses of the primary particle beam around an acceleration ring and has been developed within the radiation protection section at the National Centre for Oncological Hadrontherapy situated in Pavia. In the first part, the radiation field produced by protons and carbon ions interactions with structural materials at different energies was investigated. The main instrument of analysis is the Monte Carlo code for particle transport FLUKA, supported by experimental measurements in the treatment room carried out with the rem counter LUPIN, designed for pulsed neutron fields dosimetry. This first step allowed an analysis of both the angular and energetic instrumental response and a comparison of experimental results with simulations. The second part proposes a description of the technique for beam loss positions reconstruction around the acceleration ring at CNAO based on the application of unfolding codes.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference16 articles.
1. M.G. Pullia. Synchrotrons for hadrontherapy, in Reviews of Accelerator Science and Technology: Volume 2: Medical Applications of Accelerators (2009), pp. 157–178
2. M. Pelliccioni, Fondamenti Fisici Della Radioprotezione (Pitagora editrice Bologna, Bologna, 1993)
3. R. Schmidt. Proceedings, 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection (Newport Beach, CA, USA, November 5–14, 2014, Aug. 2016)
4. M. Pelliccioni, Radiation protection at Hadron therapy facilities. Radiat. Prot. Dosim. 146(4), 407–413 (2011)
5. K. Satou, T. Toyama, N. Kamikubota, S. Yoshida, J. Matsushita, T. Wakita, M. Sugiyama, T. Morino, New data acquisition system for beam loss monitor used in J-PARC main ring. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 887, 174–183 (2018)