Forced apart: a microtubule-based mechanism for equidistant positioning of multiple nuclei in single cells

Author:

Teapal Juliane,Schuitman Leander J.,Mulder Bela M.ORCID,Janson Marcel E.

Abstract

AbstractCells can position multiple copies of components like carboxysomes, nucleoids, and nuclei at regular intervals. By controlling positions, cells, for example, ensure equal partitioning of organelles over daughter cells and, in the case of nuclei, control cell sizes during cellularization. Mechanisms that generate regular patterns are as yet poorly understood. We used fission yeast cell cycle mutants to investigate the dispersion of multiple nuclei by microtubule-generated forces in single cells. After removing internuclear attractive forces by microtubule-based molecular motors, we observed the establishment of regular patterns of nuclei. Based on live-cell imaging, we hypothesized that microtubule growth within internuclear spaces pushes neighbouring nuclei apart. In the proposed mechanism, which was validated by stochastic simulations, the repulsive force weakens with increasing separation because stochastic shortening events limit the extent over which microtubules generate forces. Our results, therefore, demonstrate how cells can exploit the dynamics of microtubule growth for the equidistant positioning of organelles.

Funder

Foundation for Fundamental Research on Matter

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microtubule organization and cell geometry;Physical Review E;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3