A computational modeling on transient heat and fluid flow through a curved duct of large aspect ratio with centrifugal instability

Author:

Dolon Shamsun Naher,Hasan Mohammad Sanjeed,Lorenzini Giulio,Mondal Rabindra Nath

Abstract

AbstractDue to remarkable applications of the curved ducts in engineering fields, scientists have paid much attention to invent new characteristics of curved-duct flow in mechanical systems. In the ongoing study, a computational modeling of fluid flow and energy distribution through a curved rectangular duct of large aspect ratio is presented. Governing equations are enumerated by using a spectral-based numerical technique together with the function expansion and collocation method. The main purpose of the paper is to analyze the effect of centrifugal force in the flow transition as well as heat transfer in the fluid. The investigations are performed for the aspect ratio, Ar = 4; the curvature ratio, $$\delta = 0.5$$ δ = 0.5 ; the Grashof number, $${\text{Gr}} = 1000$$ Gr = 1000 ; and varying the Dean number, $$0 < {\text{Dn}} \le 1000.$$ 0 < Dn 1000 . It is found that various types of flow regimes including steady-state and irregular oscillations occur as Dn is increased. To well understand the characteristics of the flow phase spaces and power spectrum of the solutions are performed. Next, pattern variations of axial and secondary flow velocity with isotherms are illustrated for different Dn’s. It is revealed that the flow velocity and the isotherms are significantly influenced by the duct curvature and the aspect ratio. Convective heat transfer and temperature gradients are calculated which explores that the fluids are diversified due to centrifugal instability, and as a consequence the overall heat transfer is enhanced significantly in the curved duct.

Funder

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3